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Abstract
When the diffusion set is a fractal, whether the generating mappings of the
diffusion set are linear or nonlinear, the concrete expressions for the diffusion
kernel are obtained. Moreover, the fractional diffusion exponent γ of the
diffusion kernel must satisfy 0 < γ < 1. In addition, the inverse problem
of the above case is also discussed.

PACS numbers: 05.45.Df, 05.40.Fb, 05.60.-k

1. Introduction

In recent years the phenomenon of unusual transport properties on fractal structures has
attracted more and more attention [1–7]. Much work has focused on understanding diffusion
processes on such spatially correlated media. Regarding diffusion, the probability density
P(r, t), which is the probability of finding a random walker at time t at a distance r from its
starting point at t = 0, plays a central role. Diffusion on fractals exhibits many anomalous
features due to the geometrical constraints imposed by the complex structure on the diffusion
process. More important analytical calculations (supported by extensive exact enumeration
results) show that on a large class of fractal structures the probabilityP(r, t) has asymptotically
a non-Gaussian shape of the form ([7] and references therein)

P(r, t) ∼ t−df /dw exp[−const(r/R)u] (1.1)

when r/R � 1 and t → ∞, where u = dw
dw−1 , dw is anomalous diffusion exponent of diffusion

set, and df is the fractal dimension. Since 1 < u < 2, the shape described (1.1) is called
a stretched Gaussian [7] or [8]. How to give a diffusion equation which correctly describes
the above non-Gaussian behaviour of P(r, t) is still an open problem [7]. In [7, 8], a new
type of fractional diffusion equation whose asymptotic solution coincides with the result (1.1)
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is proposed and a more general conservation equation containing an explicit reference of the
diffusion process at previous times is introduced. Therefore, an integral relation of the form

j (r, t) =
∫ t

0
i(r, τ ) dτ = rdf−1

∫ t

0
K(t, τ )P (r, τ ) dτ = rdf−1

∫ t

0
K(t − τ)P (r, τ ) dτ (1.2)

and the constitutive local equation on fractals

i(r, t) = −Brdf−1r−θ ′
(
∂P (r, t)

∂r
+

K
r
P (r, t)

)
(1.3)

are proposed in [7,8], where i(r, t) is the radial probability current, K(t, τ ) = K(t − τ) is the
diffusion kernel, B > 0 is the diffusion coefficient, θ ′ > 0, and K remain to be determined.
Moreover, under the assumption that on fractals the diffusion kernel should behave as

K(t − τ) = (t − τ)−γ 0 < γ < 1 (1.4)

and the normalization condition
∫ ∞

0 rdf−1P(r, t) dt = 1 the asymptotic solution of the
fractional diffusion equation induced by (1.2) and (1.3) is obtained in [7] or [8].

But they did not show what relation between the exponents γ in (1.4) and fractals is
and how γ is determined. Recently, in a previous paper [9], for some fractals we gave the
expressions of the diffusion exponent γ and the diffusion kernelK(t). However, determination
of the constant in the expression of K(t) is still an open problem.

In this paper we will give the expression of the unknown constant in the expression of
K(t) and the exact approximation of diffusion kernels on fractals. In addition, we also discuss
the inverse problem of the above case.

2. Determination of diffusion kernel

For any given T ∈ (0,∞) and k ∈ {2, 3, . . .}, let E0 = [0, T ] and let {ϕj (x)}kj=1 be the
contractive transformations on E0, i.e.

|ϕj (x)− ϕj (y)| � cj |x − y| ∀x, y ∈ E0 0 < cj < 1. (2.1)

Suppose ϕj (E0) ∩ ϕi(E0) = ∅, i �= j . Then the non-empty compact set

ET =
∞⋂
n=1

E(n) (2.2)

is called a Cantor type set [9], where

E(n) =
⋃

j1,...,jn

Ej1···jn Ej1···jn = ϕj1 ◦ · · · ◦ ϕjn(E0).

For any given probability vector p = (p1, p2, . . . , pk) (i.e. pi > 0,
∑k

i=1 pi = 1), let the
measure µn on E(n) be a probability measure defined by dµn(τ) = mn(τ) dτ :

mn(τ) =
∑

j1,...,jn∈I
pj1 · · ·pjn

χEj1 ···jn (τ )

|Ej1···jn |
I = {1, . . . , k}

where

χEj1 ···jn (τ ) =
{

1 τ ∈ Ej1···jn
0 otherwise.

Then, as shown in [10, 11], µn weakly converges to a unique probability measure µ as
n → +∞ such that

∫
ET

dµ(τ) = 1, supp(µ) = ET , and

µ(·) =
k∑

j=1

pjµ ◦ ϕ−1
j (·). (2.3)
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Let ET be a diffusion set. The measure µ is called the diffusion measure. Thus we have the
conservation equation∫ t

0
i(r, τ ) dτ = rdf−1

∫ t

0
P(r, τ ) dµ(t − τ) (2.4)

where df denote the fractal dimension of ET . Let

M(p) =
∫ +∞

0
e−pτ dµ(τ) (2.5)

be the Laplace transform of the measure µ(τ). Since µ is supported on ET ⊂ E0 = [0, T ],
µ ◦ ϕ−1

j (·) is supported on ϕj (ET ) ⊂ Ej . Acting the Laplace transformation on both
sides of (2.3) we have

M(p) =
k∑

j=1

pj

∫ T

0
e−pϕj (τ ) dµ(τ). (2.6)

Assume that, for each j ∈ I , ϕj (x) is a similarity orϕj (x) is aC1+α-differentiable mapping
(ϕj (x) is differentiable with a Hölder continuous derivative ϕ′

j satisfying |ϕ′
j (x) − ϕ′

j (y)| <
βj |x − y|α , where α > 0 and βj > 0 are constants).

Let

bj = ϕj (0) ξj = ϕ′
j (0) 0 < ξj < 1 j = 1, . . . , k (2.7)

and 0 = b1 < b2 < · · · < bk < ϕk(T ) = T . Let ϕ̃j (x) = ϕj (x)− bj , then

ϕ̃j (x) = ξjx + O(x1+α) as x → 0. (2.8)

Thus∫ T

0
e−pϕj (τ ) dµ(τ) = e−bjp

∫ T

0
exp(−pϕ̃j (τ )) dµ(τ) = e−bjpM(ξjp) + o(1) (2.9)

as Re p → +∞ (cf [12]). It follows from (2.9) and (2.6) that

M(p) =
k∑

j=1

pje−bjpM(ξjp) + o(1) (2.10)

as Rep → +∞.
If ϕ1(0) = 0, from (2.10) we have

M(p) = p1M(ξ1p) + o(1) (as Re p → +∞) (2.11)

(cf [11, 13] or [12, 13]). Solving the function equation

M(p) = p1M(ξ1p)

we have

M(p) = Ap−ν (2.12)

where A is a constant and ν = lnp1/ ln ξ1.
Because M(0) = ∫ +∞

0 dµ(τ) = ∫ T

0 dµ(τ) = 1, but M(0) �= 0, so we choose an
approximation M̃(p) of M(p):

M(p) � M̃(p) = A′p−ν[1 − exp(−pν/A′)
]
. (2.13)

It is easy to see that M̃(0) = limp→0 M̃(p) = 1.



9818 F-Y Ren et al

Applying the theory of complex analysis we can obtain the inverse Laplace transform
L−1[M̃(p)] of M̃(p):

L−1[M̃(p)] = 1

2π i

∫ a+i∞

a−i∞
eptM̃(p) dp (a > 0)

= 1

2π i

∫ a+i∞

a−i∞
eptA′p−ν (

1 − exp(−pν/A′)
)

dp

= A′/(γ ) sin νπ

π
t−γ (2.14)

if and only if 0 < γ < 1, where γ = 1 − ν = 1 − lnp1/ ln ξ1, see the appendix.
It follows from (2.5), (2.13) and (2.14) that

dµ(t) � K(t) dt (2.15)

K(t) = A′/(γ ) sin νπ

π
t−γ . (2.16)

where K(t) is the diffusion kernel function. From
∫ T

0 dµ(t) = 1 and (2.16) we obtain that

A′/(γ ) sin νπ

π

∫ T

0
t−γ dt = A′/(γ ) sin νπ

(1 − γ )π
T 1−γ � 1.

Therefore, we obtain the approximations of the constant A′ in (2.16) and the diffusion kernel
K(t):

A′ � νπ

T ν/(1 − ν) sin νπ
. (2.17)

K(t) � ν

T ν
tν−1 = ν

T ν
t−γ (2.18)

where

γ = 1 − ν = 1 − lnp1/ ln ξ1 (2.19)

and 0 < γ < 1.
If we use M̃(ξjp) as an approximation of M(ξjp), i.e.

M(ξjp) � M̃(ξjp) = A′(ξjp)−ν
[
1 − exp(−(ξjp)ν/A′)

]
(2.20)

as Re p → +∞. Thus we have

M(p) �
k∑

j=1

pje−bjpA′(ξjp)−ν
[
1 − exp

(−(ξjp)ν/A′)] (2.21)

as Re p → +∞.
Write f (t) = L−1(M(p)). Applying the properties of the Laplace transform we obtain

L−1(e−bjpM(ξjp)) = 1

ξj
f (t − bj/ξj )η(t − bj ) (2.22)

where η(x) = 0 for x < 0 and 1 for x > 0. It follows from (2.14) and (2.22) that

L−1

( k∑
j=1

pje−bjpA′(ξjp)−ν(1 − exp(−(ξjp)ν/A′))
)

= A′/(1 − ν) sin νπ

π

(
p1ξ

−ν
1 t−γ +

k∑
j=2

pjξ
−ν
j (t − bj )

−γ η(t − bj )

)
(2.23)
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if and only if 0 < γ < 1, where γ = 1 − ν and ν = lnp1/ ln ξ1. That is,

dµ(t) � A′/(1 − ν) sin νπ

π

(
p1ξ

−ν
1 t−γ +

k∑
j=2

pjξ
−ν
j (t − bj )

γ η(t − bj )

)
dt (2.24)

if and only if 0 < γ < 1. It follows from
∫ T

0 dµ(t) = 1 that

A′ � πν

/(1 − ν)[p1ξ
−ν
1 T ν +

∑k
j=2 pjξ

−ν
j (T − bj )ν] sin νπ

. (2.25)

Therefore, we obtain the further approximation of the diffusion kernel K(t)

K(t) � ν
(
p1ξ

−ν
1 t−γ +

∑k
j=2 pjξ

−ν
j (t − bj )

−γ η(t − bj )
)

p1ξ
−ν
1 T ν +

∑k
j=2 pjξ

−ν
j (T − bj )ν

(2.26)

where

γ = 1 − ν 0 < ν = lnp1/ ln ξ1 < 1. (2.27)

3. Inverse problem

From section 2 we can see that if a diffusion fractal and a probability vector p = (p1, . . . , pk)

(which determines the self-similar measure) are given, then the diffusion kernel K(t) is
approximately determined and so we can deduce the expression of corresponding probability
current j (r, t). However, in general, the probability vector p = (p1, . . . , pk) is not known.
Therefore, we need to discuss an inverse problem. That is, if

∫ T

0 tndµ(t), t ∈ {0, 1, . . . , k},
may be measured, how is the corresponding diffusion kernel determined?

We can assume the diffusion fractal is a Cantor type set. If not, it can be approximately
determined by the way given in [14]. That is, we can find a finite set of contractive affine
transformations ϕj , j = 1, . . . , k, with respective contractivity factors s1, . . . , sk such that the
transformation ϕ(B) = ⋃k

j=1 ϕj (B) with contractivity factor s = max{sj : j = 1, . . . , k}
exists a unique fixed point E (compact set) satisfying E = ϕ(E) = ⋃k

j=1 ϕj (E) and
E = limn→∞ ϕn(B) for any compact set B.

Therefore, for any given T ∈ (0,+∞), assume the diffusion fractal ET is generated by a
set of the contraction transformations ϕj (x), j = 1, . . . , k, where x ∈ [0, T ] and when x � 1
ϕj (x) = ϕj (0) + ξjx + O(1). We know that for any given {ϕj }kj=1 and {pj }kj=1 there exists the
unique self-similar measure

µ(·) =
k∑

j=1

pjµ ◦ ϕ−1
j (·).

Let

M(p) =
∫ +∞

0
e−pτ dµ(τ)

be the Laplace transform of the measure µ(τ). Then

M(p) =
k∑

j=1

pje−ϕj (0)pM(ξjp) + o(1).

When Re p � 1,∫ T

0
e−pt dµ(t) =

k∑
j=1

pj

∫ T

0
e−p(ϕj (0)+ξj t) dµ(t) + o(1)
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i.e. ∫ T

0

∞∑
n=0

1

n!
(−pt)n dµ(t) =

∞∑
n=0

1

n!

k∑
j=1

pj

∫ T

0
[p(ϕj (0) + ξj t)]

n dµ(t) + o(1).

Thus∫ T

0
tn dµ(t) =

k∑
j=1

pj

∫ T

0
(ξj t + bj )

n dµ(t) + o(1) bj = ϕj (0) n = 0, 1, . . . , k.

That is, p = (p1, . . . , pk) should satisfy the equation∫ T

0
tn dµ(t) =

k∑
j=1

pj

∫ T

0
(ξj t + bj )

n dµ(t) n = 0, 1, . . . , k.

Let

jn =
∫ T

0
tn dµ(t) anj =

∫ T

0
(ξj t + bj )

n dµ(t) j, n = 1, . . . , k.

Then
k∑

j=1

pj = 1

k∑
j=1

anjpj = jn n = 1, . . . , k

(3.1)

where anj = ∑n
i=0 C

n
i ξ

i
j b

n−i
j ji , Cn

i = n(n−1)···(n−i+1)
i! .

If jn, n = 1, . . . , k, are known or can be measured, then the linear equations (3.1) are
determined. Since the self-similar measure is unique, the corresponding probability vector
p = (p1, . . . , pk) is uniquely determined. Therefore, if the coefficient determinant

Dk =

∣∣∣∣∣∣∣
a11 a12 · · · a1k

a21 a22 · · · a2k

· · · · · ·
ak1 ak2 · · · akk

∣∣∣∣∣∣∣ �= 0

the unique solution of equations (3.1) is

pj = Dj

Dk

j = 1, . . . , k

where

Dj =

∣∣∣∣∣∣∣
a11 · · · a1(j−1) j1 a1(j+1) · · · a1k

a21 · · · a2(j−1) j2 a2(j+1) · · · a2k

· · · · · · · · ·
ak1 · · · ak(j−1) jk ak(j+1) · · · akk

∣∣∣∣∣∣∣ .
Therefore, using formulae (2.27) and (2.26) in section 2 we can obtain the diffusion

exponent γ and the kernel function K(t).

4. Conclusions

(1) When the diffusion set isET , whether the generating mappings {ϕj (x)}kj=1 of the diffusion
set are linear, nonlinear, increasing or decreasing and no matter which self-similar measure
is taken, the diffusion exponentγ is always determined only by1−ν = 1−lnp1/ ln |ϕ′

1(0)|,
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and γ must satisfy 0 < γ < 1, i.e.p1 > |ϕ′
1(0)|, wherep1 is the first weight of self-similar

measure defined on the diffusion set and ϕ′
1(0) is the derivative at 0 of the first generating

mapping of the diffusion set, but it does not depend on the other weights of self-similar
measure and other mappings.

(2) The constant A′ in the diffusion kernel expression K(t) is approximately given by the
formulae (2.17) or (2.25), it depends both on the generating mappings of the diffusion set
and on the weights of the self-similar measure.

(3) From (2.26) the diffusion kernelK(t) is determined not only by ν = lnp1/ ln |ϕ′
1(0)|, but

also by all {pj }kj=1, {ϕj (0)}kj=1, {ϕ′
j (0)}kj=1 and T . This means that the diffusion kernel

K(t) depends both on the generating mappings of the diffusion set and on the weights of
the self-similar measure.

(4) γ = 1 − df if and only if p1 = ξ
df
1 and γ = df if and only if p1 = ξ (1−df ).

(5) From the formula γ = 1 − lnp1/ ln ξ1, we can see that there is no direct relationship
between the fractional diffusion exponent γ and the geometrical characteristics of the
fractal structure of the diffusion setET considered. This is determined by the methodology.

(6) From section 3 if contractive transformations {ϕj (x)}kj=1 and
∫ T

0 tn dµ(t) are given, then
the corresponding diffusion kernel and diffusion exponent can be uniquely determined.
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Appendix

The inverse Laplace transform of L−1[M̃(p)] can be evaluated from the complex inversion
formula

L−1[M̃(p)] = 1

2π i

∫ a+i∞

a−i∞
eptM̃(p) dp (A.1)

following the integration path shown in figure A.1.
Applying the theorem of Cauchy (A.1) becomes

L−1[M̃(p)] = L−1
[
Ap−ν (1 − exp(−pν/A))]

= 1

2π i

∫ a+i∞

a−i∞
Aeptp−ν (1 − exp(−pν/A)) dp

= − lim
R→+∞
ε→+0

1

2π i

∫
/ε+/1+/2+C1+C2

Aeptp−ν (1 − exp(−pν/A)) dp

= − lim
R→+∞
ε→+0

1

2π i
(I1 + I2 + I3 + I4) (A.2)

where

I1 =
∫
/ε

Aeptp−ν (1 − exp(−pν/A)) dp I2 =
∫
/1

Aeptp−ν (1 − exp(−pν/A)) dp,

I3 =
∫
/2

Aeptp−ν (1 − exp(−pν/A)) dp I4 =
∫
C1+C2

Aeptp−ν (1 − exp(−pν/A)) dp.

We might as well assume A > 0. First, we prove that for ν > 0

lim
ε→+0

{
I1 =

∫
/ε

Aeptp−ν (1 − exp(−pν/A)) dp

}
= 0 (A.3)

where /ε : p = εeiθ ,−π < θ < π, dp = iεeiθ dθ .
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R

β

Γ1

Γ2

Γε
C2

C1

y

a x

Figure A.1. Contour of integration in the complex plane for
evaluating the inverse Laplace transform formula (A.1).

In fact,

|I1| �
∫
A

∣∣eptp−ν (1 − exp(−pν/A))∣∣ | dp|

� Aε1−ν
∫ π

−π
etε cos θ |z|

[
1 +

1

2!
|z| + · · · +

1

n!
|z|n−1 + · · ·

]
dθ (z = ενeiθν/A)

� 2ε1−ν
∫ π

0
εν(e − 1) exp(tε cos θ) dθ < 2π(e − 1)εetε

when ε � 1 and ν > 0, because when ε � 1 and ν > 0, |z| = εν/A < 1 and
1 + 1

2! |z| + · · · + 1
n! |z|n−1 + · · · < e − 1. Therefore (A.3) holds.

Second, we prove that

lim
R→+∞

{
I2 =

∫
/1

Aeptp−ν (1 − exp(−pν/A)) dp

}
= 0 (A.4)

if and only if 0 < ν < 1. Here /1 : p = Reiθ , β < θ < π, dp = iReiθ dθ .

Case I. 0 < ν < 1.
Note that

|I2| � A

∫
/1

|p−ν | [| exp(pt)| + | exp(pt − pν/A)|] | dp|

= AR1−ν
[∫ π

β

exp(tR cos θ) dθ +
∫ π

β

exp(tR cos θ − Rν cos(νθ)/A) dθ

]
= I21 + I22 (A.5)

where

I21 = AR1−ν
∫ π

β

exp(tR cos θ) dθ

I22 = AR1−ν
∫ π

β

exp(tR cos θ − Rν cos(νθ)/A) dθ.

Since 1 − ν > 0, cosβ = a/R, limR→+∞ cos(νβ) = cos(πν/2) �= 0, and exp(tR cos θ −
Rν cos(νθ)/A) is monotonic in θ ∈ [β, π ] as R � 1, we obtain that
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lim
R→+∞

I22 = lim
R→+∞

[
AR1−ν

∫ π

β

exp(tR cos θ − Rν cos(νθ)/A) dθ

]
� A(π − β) lim

R→+∞
[
R1−ν exp(tR cosβ − Rν cos(νβ)/A)

]
= A(π − β)eta lim

R→+∞
[
R1−ν exp(−Rν cos(νβ)/A)

] = 0 (A.6)

using L’Hospital rule. On the other hand,

lim
R→+∞

I21 = lim
R→+∞

[
AR1−ν

∫ π

β

exp(tR cos θ) dθ

]

= A lim
R→+∞

[
R1−ν

(∫ π/2

β

+
∫ π

π/2

)
exp(tR cos θ) dθ

]
. (A.7)

Consider
∫ π

π/2 exp(tR cos θ) dθ . Since exp(tR cos θ) is monotonic in θ , the theorem of
integral mean value follows and there exists θR: π/2 < θR < π such that∫ π

π/2
exp(tR cos θ) dθ = π

2
exp(tR cos θR) = π

2
exp(−tR| cos θR|).

Let xR = R| cos θR|, then 0 < xR < R and∫ π

π/2
exp(tR cos θ) dθ = π

2
exp(−txR). (A.8)

Since
∫ π

π/2 exp(tR cos θ) is monotonically increasing in R and so xR is decreasing. Let x∞ =
limR→∞ xR , then R � x∞ > 0. For any given ε > 0, when R � 1, x∞ > xR > x∞ − ε > 0.
Let x∞ − ε = R| cos θε|, x∞ = R| cos θ∞|, it follows from (A.8) that

π

2
exp(−tR| cos θ∞|) �

∫ π

π/2
exp(tR cos θ) dθ <

π

2
exp(−tR| cos θε|). (A.9)

Using the L’Hospital rule we have

lim
R→∞

R1−ν
∫ π

π/2
exp(tR cos θ) dθ � lim

R→∞
π

2
[R1−ν exp(−tR| cos θε|)] = 0 (A.10)

when 1 − ν > 0. It follows from (A.8)–(A.10) that

A lim
R→+∞

[
R1−ν

∫ π

π/2
exp(tR cos θ) dθ

]
= 0. (A.11)

From the monotonicity of exp(tR cos θ) it follows that∫ π/2

β

exp(tR cos θ) dθ < (π/2 − β) exp(tR cosβ)

= (π/2 − cos−1(a/R)) exp(ta)

= eta
[
x(1 − x2)−1/2 + 1

2x
3(1 − x2)−3/2 + · · · ] (x = a/R)

= eta(a/R + o(a/R)) (A.12)

when R � 1. Thus,

lim
R→+∞

[
R1−ν

∫ π/2

β

exp(tR cos θ) dθ

]
� lim

R→+∞
[
etaR−ν(a + O(a/R))

] = 0. (A.13)

It follows from (A.7), (A.11) and (A.13) that

lim
R→+∞

I21 = lim
R→+∞

[
AR1−ν

∫ π

β

exp(tR cos θ) dθ

]
= 0. (A.14)

Therefore, it follows from (A.5), (A.6) and (A.14) that (A.4) holds when 0 < ν < 1.
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Case II. 1 − ν = 0, i.e. ν = 1.
It follows from (A.8) and (A.12) that

lim
R→+∞

I21 = lim
R→+∞

A

(∫ π/2

β

+
∫ π

π/2

)
exp(tR cos θ) dθ = 0. (A.15)

Similarly, if t > 1/A, then

lim
R→+∞

I22 = lim
R→+∞

A

∫ π

β

exp[(t − 1/A)R cos θ ] dθ = 0. (A.16)

Therefore, it follows from (A.4), (A.5), (A.15) and (A.16) that when ν = 1 and t > 1/A,

lim
R→+∞

{
I2 =

∫
/1

Aeptp−ν (1 − exp(−pν/A)) dp

}
= 0. (A.17)

If t = 1/A, then

lim
R→+∞

I22 = A lim
R→+∞

(π − β) = Aπ/2 �= 0. (A.18)

If t < 1/A, i.e. t − 1/A < 0, then

lim
R→+∞

I22 = A lim
R→+∞

{∫ π/2

β

exp
[ − (A−1 − t)R cos θ

]
dθ

+
∫ π

π/2
exp

[
(A−1 − t)R| cos θ |] dθ

}

= 0 + lim
R→+∞

∫ π

π/2
exp

[
(A−1 − t)R| cos θ |] dθ � π/2 �= 0. (A.19)

But |I2| � I21 − I22. Thus it follows from (A.15), (A.18) and (A.19) that, when t = 1/A
or t < 1/A and ν = 1, limR→+∞ I2 �= 0.

Case III. ν > 1.
Since ν − 1 > 0, it is obvious that

lim
R→+∞

I21 = A lim
R→+∞

[
1

Rν−1

∫ π

β

exp(tR cos θ) dθ

]
= 0.

Now, consider

lim
R→+∞

I22 = lim
R→+∞

A

Rν−1

∫ π

β

exp(tR cos θ − Rν cos(νθ)/A) dθ.

For any given 0 < η < 1, there exists an interval [aν, bν] ⊂ (β, π) dependent on ν such
that cos νθ < 0 and | cos νθ | > η. Thus

lim
R→+∞

I22 � lim
R→+∞

A

Rν−1

∫
[aν ,bν ]

exp(tR cos θ − Rν cos(νθ)/A) dθ

= lim
R→+∞

exp(−Rν cos(νθ)/A)
∫

[aν ,bν ]
exp(tR cos θ) dθ

� lim
R→+∞

exp(−Rνη/A)

∫
[aν ,bν ]

exp(tR cos θ) dθ = +∞
using the integral mean value theorem.

Thus, when ν > 1, limR→+∞ I2 �= 0 because |I2| � I22 − I21.
From the above discussion we obtain the following result:

lim
R→+∞

{
I2 =

∫
/1

Aeptp−ν (1 − exp(−pν/A)) dp

}
= 0 (A.20)

if and only if 0 < ν < 1.
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Similarly,

lim
R→+∞

{
I3 =

∫
/2

Aeptp−ν (1 − exp(−pν/A)) dp

}
= 0 (A.21)

if and only if 0 < ν < 1.
Therefore, from (A.2), (A.3), (A.20) and (A.21) we obtain that, when 0 < ν < 1,

L−1[M̃(p)] = L−1
[
Ap−ν (1 − exp(−pν/A))]

= − lim
R→+∞
ε→+0

1

2π i

∫
C1+C2

Aeptp−ν (1 − exp(−pν/A)) dp

= − A

2π i

[
−

∫ ∞

0

e−tx(1 − exp(−xνeiνπ/A))

xν exp(iνπ)
dx

+
∫ ∞

0

e−tx(1 − exp(−xνe−iνπ/A))

xν exp(−iνπ)
dx

]

= A

π
(sin νπ)

∫ ∞

0
e−tx/xν dx = A sin νπ

π
tν−1

∫ ∞

0
e−y/yν dy

= A/(1 − ν) sin νπ

π
tν−1.
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